Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

## Two-component molecular crystals composed of chloronitrobenzoic acids and 4-aminopyridine

Teruki Sugiyama, ${ }^{\text {a }}$ Jiben Men ${ }^{\text {a* }}$ and Teruo Matsuura ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and ${ }^{\mathbf{b}}$ Kyoto University, 21-26 Kawashima-Gondencho Saikyoku, Kyoto 615-8195, Japan
Correspondence e-mail: mengjiben@eyou.com

Received 11 January 2002
Accepted 25 February 2002
Online 21 March 2002
The crystal structures of the four isomeric organic salts 4-aminopyridinium 2-chloro-4-nitrobenzoate, (I), 4-aminopyridinium 2-chloro-5-nitrobenzoate, (II), 4-aminopyridinium 5-chloro-2-nitrobenzoate, (III), and 4-aminopyridinium 4-chloro-2-nitrobenzoate, (IV), all $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$, are presented. Compound (I) has one intramolecular hydrogen bond, one intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and $\pi-\pi$-stacking interactions. Compound (II) has $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, and $\mathrm{Cl} \cdots \mathrm{O}-\mathrm{C}$ electrostatic interactions. Compound (III) has $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Compound (IV) has a $\pi-\pi$ stacking interaction, but no $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Comment

We have been interested in the preparation and uses of twocomponent molecular crystals (Koshima, Ding et al., 1996; Koshima, Wang et al., 1996). In order to predict packing modes in such systems and to design specific crystal structures, we have studied how the weaker intermolecular interactions, such as aromatic $\pi-\pi$-stacking interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, affect packing modes in molecular crystals



|  | $R^{1}$ | $R^{2}$ | $R^{3}$ |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- |
| (1) | (2) Cl $\mathrm{NO}_{2}$ H | $\longrightarrow$ | (I) |  |  |
| (3) | Cl | H | $\mathrm{NO}_{2}$ | $\longrightarrow$ | (II) |
| (4) | $\mathrm{NO}_{2}$ | H | Cl | $\longrightarrow$ |  |
| (5) | $\mathrm{NO}_{2}$ | Cl | H | $\longrightarrow$ | (III) |
|  |  |  |  | (IV) |  |

(Sugiyama, Beng, Wen et al., 2002). In this paper, we describe the syntheses and structures of four different two-component molecular crystals, (I)-(IV), comprising 4-aminopyridine, (1), with four isomers of chloronitrobenzoic acid, (2)-(5), and we report their packing modes, which exhibit many of the intermolecular interactions described above.



Figure 1
A view of the molecule of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small spheres of arbitrary radii.

X-ray analysis of the four single crystals confirmed that the ratio of acid to base is $1: 1$, and the molecular pairs are connected through $\mathrm{COO}^{-} \cdots \mathrm{HN}^{+}$hydrogen bonds, with the transfer of an H atom, to form the salt in all cases. We were interested in seeing whether any of the products crystallized in chiral space groups, since (1) itself is known to crystallize in space group $P 2_{1} 2_{1} 2_{1}$ (Sugiyama, Meng \& Matsuura, 2002). However, all four salts were found to crystallize in achiral space groups.

For (I) (space group Pbca), there is an intramolecular hydrogen bond (Fig. 1 and Table 1), which occurs only in (I). An intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links the two-


Figure 2
The crystal structure of (I) viewed along the $a$ axis. Hydrogen bonds are indicated by broken lines and distances are in $\AA$.


Figure 3
A view of the molecule of (II) with the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small spheres of arbitrary radii.


Figure 4
The planar structure of (II) viewed along the $b$ axis. Hydrogen bonds and electrostatic interactions are indicated by broken lines, and distances are in $\AA$.
dimensional (001) sheets formed by hard hydrogen bonds. Furthermore, (I) exhibits $\pi-\pi$-stacking interactions, in which neighbouring benzoate aromatic rings are stacked with an interplanar separation of $3.39 \AA$ (Fig. 2).

Compound (II), which crystallizes in space group $P 2_{1} / n$ (Fig. 3), forms a planar network through a variety of hydrogen bonds (Table 2). In this network, there are, in addition to N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, two kinds of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a single $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, although this last type is not as common as the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type (Fig. 4). Besides these hydrogen bonds, an additional feature of (II) is the presence of a $\mathrm{Cl} 1 \cdots \mathrm{O} 1-\mathrm{C} 6$ electrostatic interaction ( $\mathrm{Cl} \cdots \mathrm{O} 3.20 \AA$ ), forming a centrosymmetric ring. Each (010) sheet is connected to a neighbouring sheet along [010] through


Figure 5
The crystal structure of (II) viewed along the $a$ axis. Hydrogen bonds and electrostatic interactions are indicated by broken lines, and distances are in $\AA$.


Figure 6
A view of the molecule of (III) with the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small hatched spheres of arbitrary radii.
a Cl1 • O 3 electrostatic interaction (Cl $\cdots \mathrm{O} 3.22 \AA$ ) (Fig. 5).
The molecular structure of (III), which crystallizes in space group $P 2_{1} / c$, is shown in Fig. 6. Compound (III) forms (100) sheets, in which the components are linked by both hard and soft hydrogen bonds (Table 3); the soft hydrogen bonds alone generate a chain along [001] (Fig. 7).

In the crystal structure of (IV) (C2/c; Fig. 8 and Table 4), there are no $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, but the (100)


Figure 7
The crystal structure of (III) viewed along the $b$ axis. Hydrogen bonds are indicated by broken lines and distances are in $\AA$.


Figure 8
A view of the molecule of (IV) with the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level and H atoms are shown as small spheres of arbitrary radii.


Figure 9
The crystal structure of (IV) viewed along the $b$ axis. Hydrogen bonds are indicated by broken lines and distances are in $\AA$.
hydrogen-bonded sheets are linked by a $\pi-\pi$-stacking interaction in which two benzoate aromatic rings have an interplanar separation of $3.41 \AA$ (Fig. 9).

We have found that many of the two-component molecular crystals formed by chloronitrobenzoic acids with organic bases crystallize to give good single crystals suitable for X-ray crystallographic analysis more easily than the corresponding series of two-component molecular crystals formed by the non-chlorinated nitrobenzoic acids with organic bases (Sugiyama, Meng et al., 2002). Thus, the Cl atoms may play a space-filling role in the crystallization process.

We also found that the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the O atom of the nitro group, with a large $\beta$ value (Kamlet et al., 1983), played a significant role in determining the packing modes in this study, although it has been reported that nitro groups are not used as hydrogen-bond acceptors (Etter \& Panunto, 1988).

## Experimental

The title salts, (I)-(IV), were prepared by spontaneous crystallization from solutions of the respective individual components in methanolacetonitrile (1:1) for (I), acetonitrile for (II) and (IV), and methanol for (III). In spite of many attempts, we only obtained separate crystals of the acid and base components when trying to prepare the salt of

4-aminopyridine and 4-chloro-3-nitrobenzoic acid. Solid-state IR spectra were recorded as KBr discs on a PYE UNICAM SP-300 IR spectrophotometer. Elemental analyses were carried out with a Yanako CHN Corder MT-3. Melting points were determined using differential scanning calorimetry (DSC) on a NETZSCH DSC 204. All non-covalent bonds were calculated using PLATON (Spek, 1990).

Analysis for (I): m.p. $424 \mathrm{~K} ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3333$ (br), 3164, 3099, 2551 (br), 2001 (br), 1661, 1608, 1577, 1534, 1381, 1352, 1196, 1121, 1047, 895, 817, 754 ; analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ : C 48.8, H 3.4, N 14.2\%; found: C 48.6, H 3.3, N 14.0\%.

Analysis for (II): m.p. 437 K ; IR (KBr, cm ${ }^{-1}$ ): 3411, 3168, 2500 (br), 2072 (br), 1657, 1643, 1588, 1525, 1403, 1357, 1196, 1159, 1045, 912, 837, 740; analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ : C 48.8, H 3.4, N 14.2\%; found: C 48.6, H 3.6, N $14.2 \%$.

Analysis for (III): m.p. 431 K ; IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3319 (br), 3198, 3097, 2667, 2362 (br), 1662, 1626, 1563, 1530, 1385, 1361, 1337, 1196, $1147,1055,898,832,791,761$; analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ : C 48.8, H 3.4, N $14.2 \%$; found: C 48.6, H 3.4, N $14.1 \%$.

Analysis for (IV): m.p. $417 \mathrm{~K} ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3320(b r), 3104$ (br), 2651 (br), 2041 (br), 1961 (br), 1659, 1590, 1563, 1530, 1372, 1278, 1195, 1143, 1102, 1045, 889, 874, 821; analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{4}$ : C 48.8, H3.4, N 14.2\%; found: C 48.8, H3.4, N $14.3 \%$.

## Compound (I)

## Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=295.68$
Orthorhombic, Pbca
$a=9.923$ (3) £
$b=9.527$ (3) $\AA$
$c=27.337$ (7) $\AA$
$V=2584.5(12) \AA^{3}$
$Z=8$
$D_{x}=1.520 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 90 reflections
$\theta=2.3-24.5^{\circ}$
$\mu=0.31 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

## Data collection

## Bruker CCD area-detector

diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.912, T_{\max }=0.940$
10028 measured reflections

2288 independent reflections
1249 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=25^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 9$
$l=-27 \rightarrow 32$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.07 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

## Table 1

Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$ | 0.86 | 2.08 | $2.915(4)$ | 165 |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$ | 0.86 | 2.16 | $2.961(4)$ | 155 |
| N2-H2B $\mathrm{O}^{\text {ii }}$ | 0.86 | 1.84 | $2.699(3)$ | 178 |
| $\mathrm{C}^{\mathrm{H}}-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {ii }}$ | 0.93 | 2.64 | $3.434(5)$ | 144 |
| $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1$ | 0.93 | 2.39 | $2.729(4)$ | 101 |

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (ii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iii) $\frac{3}{2}-x,-y, z-\frac{1}{2}$.

## Compound (II)

## Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=295.68$
Monoclinic, $P 2_{1} / n$
$a=12.624$ (4) $\AA$
$b=7.270(2) \AA$
$c=14.023$ (5) $\AA$
$\beta=96.329(5)^{\circ}$
$V=1279.1(7) \AA^{3}$
$Z=4$

## Data collection

Bruker CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.897, T_{\text {max }}=0.925$
5062 measured reflections

## Refinement

Refinement on $F^{2}$
$R(F)=0.034$
$w R\left(F^{2}\right)=0.093$
$S=1.02$
2256 reflections
193 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ) for (II).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$ | $0.892(10)$ | $2.115(10)$ | $3.006(3)$ | $177(2)$ |
| $\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$ | $0.894(10)$ | $2.241(12)$ | $3.113(2)$ | $165(2)$ |
| $\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{O} 2$ | $0.920(10)$ | $1.751(11)$ | $2.665(2)$ | $172(2)$ |
| $\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{ii}}$ | 0.93 | 2.59 | $3.491(3)$ | 163 |
| $\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{iii}}$ | 0.93 | 2.50 | $3.271(3)$ | 141 |
| $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl}^{\mathrm{iv}}$ | 0.93 | 2.90 | $3.651(2)$ | 139 |

Symmetry codes: (i) $x-\frac{1}{2},-\frac{1}{2}-y, z-\frac{1}{2} ;$ (ii) $x, y, z-1$; (iii) $1-x,-y,-z$; (iv) $2-x,-y,-z$.

## Compound (III)

## Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=295.68$
Monoclinic, $P 2_{1} / c$
$a=12.219$ (6) $\AA$
$b=8.488(4) \AA$
$c=13.368$ (6) $\AA$
$\beta=112.467$ (9) ${ }^{\circ}$
$V=1281.1(10) \AA^{3}$
$Z=4$
$D_{x}=1.533 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1254
$\quad$ reflections
$\theta=3.0-30.0^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

## Data collection

Bruker CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.911, T_{\text {max }}=0.940$
5126 measured reflections
$D_{x}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 74 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$
2256 independent reflections
1660 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\max }=25^{\circ}$
$h=-14 \rightarrow 15$
$k=-8 \rightarrow 4$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right. \\
& +0.08 P \text { ] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.026 \\
& \Delta \rho_{\text {max }}=0.15 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 3
Hydrogen-bonding geometry ( $\AA^{\circ},^{\circ}$ ) for (III).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 3-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$ | $0.82(4)$ | $2.10(4)$ | $2.925(5)$ | $178(4)$ |
| $\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$ | $0.76(4)$ | $2.10(4)$ | $2.781(5)$ | $150(4)$ |
| $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2}$ | $0.94(4)$ | $2.00(4)$ | $2.928(5)$ | $171(4)$ |
| $\mathrm{C} 3-\mathrm{H} 3 A \cdots 4^{\mathrm{iii}}$ | 0.93 | 2.54 | $3.414(5)$ | 156 |
| $\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\mathrm{iii}}$ | 0.93 | 2.52 | $3.424(5)$ | 163 |

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-\frac{1}{2}-y, z-\frac{1}{2}$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.

## Refinement

Refinement on $F^{2}$
$R(F)=0.049$
$w R\left(F^{2}\right)=0.146$
$S=0.98$
2255 reflections
193 parameters

## Compound (IV)

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClNO}_{4}{ }^{-}$
$M_{r}=295.68$
Monoclinic, C2/c
$D_{x}=1.499 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=25.608$ (19) A
$b=8.475$ (6) A
$c=12.433(10) \AA$
$\beta=103.749(14)^{\circ}$
$V=2621(3) \AA^{3}$
$Z=8$
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0656 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

## Data collection

| Bruker CCD area-detector | 2308 independent reflections |
| :--- | :--- |
| $\quad$ diffractometer | 1579 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.028$ |
| Absorption correction: multi-scan | $\theta_{\max }=25^{\circ}$ |
| $\quad(S A D A B S ;$ Sheldrick, 1996) | $h=-30 \rightarrow 26$ |
| $T_{\min }=0.913, T_{\max }=0.941$ | $k=-10 \rightarrow 9$ |
| 5262 measured reflections | $l=-14 \rightarrow 12$ |

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0586 P)^{2}\right. \\
& +1.1026 P]
\end{aligned} \\
& +1.1026 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.23 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0061 \text { (7) }
\end{aligned}
$$

$R(F)=0.037$
$w R\left(F^{2}\right)=0.120$
$S=1.04$
2308 reflections
194 parameters
H atoms treated by a mixture of independent and constrained refinement

All H atoms in (I) were constrained. In (II)-(IV), H atoms on N were refined freely. In all four compounds, H atoms which were not

Table 4
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$ for (IV).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ | $0.93(3)$ | $1.79(3)$ | $2.694(3)$ | $164(3)$ |
| $\mathrm{N} 2-\mathrm{H} 22 \cdots 1^{\mathrm{i}}$ | $0.80(3)$ | $2.10(3)$ | $2.891(4)$ | $172(3)$ |
| $\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O}^{1 i}$ | $0.95(3)$ | $1.99(3)$ | $2.931(4)$ | $169(3)$ |

Symmetry codes: (i) $x, 2-y, z-\frac{1}{2}$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.
refined were treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ 0.86 Å.

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the Natural Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1189). Services for accessing these data are described at the back of the journal.

## References

Bruker (1998). SMART. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. \& Panunto, T. W. (1988). J. Am. Chem. Soc. 110, 5896-5897.
Kamlet, M. J., Abboud, J.-L. M., Abraham, M. H. \& Taft, R. (1983). J. Org. Chem. 48, 2877-2887.
Koshima, H., Ding, K., Chisaka, Y. \& Matsuura, T. (1996). J. Am. Chem. Soc. 118, 12059-12065.
Koshima, H., Wang, Y., Matsuura, T., Mizutani, H., Isako, H., Miyahara, I. \& Hirotsu, K. (1996). Mol. Cryst. Liq. Cryst. 279, 265-274
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Sugiyama, T., Meng, J. \& Matsuura, T. (2002). Mol. Cryst. Liq. Cryst. In the press.
Sugiyama, T., Meng, J., Wen, Z., Li, J. \& Matsuura, T. (2002). Mol. Cryst. Liq. Cryst. In the press.

